Texture Mapping

May 4, 2006

Many slides are borrowed from UNC-CH
COMP236 Course (Spring 2003) taught
by Leonard McMillan
http://www.unc.edu/courses/2003spring/
comp/236/001/handouts.html

The Quest for Visual Realism

Model
R Model with

Shading

Model with
Shading
and Textures

e

At what point
do things start
looking realistic?

3/29/2003 Lecture 17

Decal Textures

The concept is very simple!

_ For each triangle in the model
: establish a corresponding region
N in a "texture map"

During rasterization interpolate the
coordinate indices within the texture map

3/29/2003 Lecture 17

Simple OpenGL Example

= Specify a texture coordinate
at each vertex (s, t)

» Canonical coordinates where
sand tare between O and 1

3/29/2003

public override void Draw() {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT};
glLoadldentity();

glTranslated(centerx, centery, depth);
gMultMatrixf(Rotation);

// Draw Front of the Cube
glEnable(GL_TEXTURE_2D);
glBegin(GL_QUADS);
glColor3d(0.0, 0.0, 1.0);
giTexCoord2d(0, 1);
glVertex3d(1.0,1.0,1.0);
giTexCoord2d(1, 1);
glVertex3d(-10, 1.0, 1.0);
giTexCoord2d(1, 0);
gVertex3d(-1.0,-1.0, 1.0);
giTexCoord2d(0, O);
glVertex3d(1.0,-1.0,1.0);
glEnd();
glDisable(GL_TEXTURE_2D);

giFiush():

Lecture 17 4

Linear Interpolation of Textures

At first, you might think that we could simply apply the linear interpolation methods
that we used to interpolate colors in our triangle rasterizer. However, if you implement
texturing this way, you don't get the expected results.

Notice how the texture seems to bend and warp along the diagonal triangle edges.
Lets take a closer look at what is going on.

3/29/2003

Lecture 17 6

Texture Index Interpolation

Interpolating texture indices is not as simple as the linear interpolation of
colors that we discussed when rasterizing triangles. Let's look at an example.

First, lets consider one edge from a given triangle. This edge and its
projection onto our viewport lie in a single common plane. For the moment,
lets look only at that plane, which is illustrated below:

edge’s ¥
7 projection “f’} /
& tHangle s
i 8 ; wtoe
| ==y Y
By [h
Viewport
3/29/2003 Lecture 17 7

Texture Interpolation Problem

viewport

edge’s
projection | b

e

triangle’s
edge

X,

7
Zy
<z

Notice that uniform steps on the image plane do
not correspond to uniform steps along the edge.

Without loss of generality, let's assume that the viewport is located 1 unit away
from the center of projection.

3/29/2003 Lecture 17

Linear Interpolation in Screen Space

viewport

edge’s
projection | A

X,
trangle’s
Xy edge
£
V.’
7
Zy
£

Compare linear interpolation in screen space

HO=pripy=p) =i+ i(i =)

3/29/2003 Lecture 17

Linear Interpolation in 3-Space

viewport

edge’s
projection | p

X,
triangle’s
Xy edge
£
I'/f
7
Z;
<

to interpolation in 3-space:

x _ & vy X B X P X _ X sl —x)
z| |z 2 I EA z|) atsla-z)

3/29/2003 Lecture 17

How to make them Mesh

Still need to scan convert in screen space... so we need a mapping from ¢ values
to svalues. We know that the all points on the 3-space edge project onto our
screen-space line. Thus we can set up the following equality:

X xl_ﬂ
z”(z)

and solve for sin terms of £ giving:

M sl —x)

z, +s(z,—z)

tz
4=
zZ,+1(z,—z,)

Unfortunately, at this point in the pipeline (after projection) we no longer have z
and z, lingering around (Why?). However, we do have w, = //z,and w, = 1/z,

1
te _ tw,

1 1_1y _
S ow e (w, —wy)

1
Wy Wy

3/29/2003 Lecture 17 1

Interpolating Parameters

We can now use this expression for s to interpolate arbitrary parameters,
such as texture indices (¢, v/, over our 3-space triangle. This is accomplished
by substituting our solution for s given tinto the parameter interpolation.

vu=u +5(t, —u,)

Fw, _ Wy I (w, —w)

(“2 _Lﬁ)

wy + 1 (W, —w)) w, (W, —w))

Therefore, if we premultiply all parameters that we wish to interpolate in 3-
space by their corresponding wvalue and add a new plane equation to
interpolate the wvalues themselves, we can interpolate the numerators and
denominator in screen-space. We then need to perform a divide a each step
to get to map the screen-space interpolants to their corresponding 3-space
values. This is a simple modification to the triangle rasterizer that we
developed in class.

3/29/2003 Lecture 17 12

Demonstration

For obvious reasons this method of interpolation is called perspective-correct
interpolation. The fact is, the name could be shortened to simply correct
interpolation. You should be aware that not all 3-D graphics APls implement
perspective-correct interpolation.

3/29/2003 Lecture 17 13

Compare the above with what we
discussed previously...

(Note the different meaning of s and t.)

Derivation of s and ¢

» Two end points P,=(x,, y4, z;) and
P,=(X,, Y2, Z5). Let P3=(1-1)P+(t)P,

- After projection, P,, P,, P; are projected

to (X’4, Y1), (X*5, ¥’5), (X3, Y’3) INn SCreen
coordinates. Let (x5, y’3)=(1-s)(X’4, ¥’4)

+ 8(X’5, ¥’5)

* (X1, Y1), (X5, ¥'5), (X5, ¥'3) are obtained

from P,, P,, P5 by:

_x'1 W X X', W, Xy
1 1

Yawm - M Wi Yaw, MJ’z

z'\w, z [z'w, z,

LW, 1 w, 1

W

X3 W; X3 X X

yiw y y y
=M T =MW1= |+ 7))

z'yw; Z3 Z 2
w, 1 1 1

1 1
Since X X X, X W,

M B2 _ yow, ’ M Y _ V' w,
z, z'\w zZ, z'w,
1 w, 1 w,
We have: X'y Wy X X,
LW
y'a 3 — (=M Y1 +tMy2
Z3 Wy 1 Z
w, 1 1
X'\ w x', w,
L w
—(1-1) yvl iy yvz b
5w ZoW,
W W,

When P, is projected to the screen, we
get (x5, y’3) by dividing by w, so:

A-Dx"'w+t-x,w, (I-t)y' '\ w+t-y,w

x' s 1 — ,
&) = T ow, (A—tyw, +1-w,

But remember that

(X’3, y’3)=(1-s)(x’1, Y’1) + S(X,2’ y’z)
Looking at x coordinate, we have

(A=s)x, +s-x (A= w A X, W,
: ? (I-t)w, +t-w,

We may rewrite s in terms of t, w,, w,, X’;,
and x’,,.

In fact, tow, tw,

S = =
A=-w +t-w, w +t(w,—w,)

or conversely

S-wW, S-w,

_s-wl+(l—s)w2 _s(wl—w2)+w2

Surprisingly, x’, and x’, disappear.

Texture Mapping Il

10

What You Will Learn Today?

 Bump maps

Mipmapping for antialiased textures
Projective textures

Shadow maps

Environment maps

The Limits of Geometric
Modeling

* Although graphics cards can render over
10 million polygons per second, that
number is insufficient for many
phenomena

—Clouds
—Grass
—Terrain
—Skin

11

Modeling an Orange

* Consider the problem of modeling an
orange (the fruit)

« Start with an orange-colored sphere
—Too simple
*Replace sphere with a more complex
shape
—Does not capture surface characteristics (small
dimples)
—Takes too many polygons to model all the
dimples

Modeling an Orange (2)

» Take a picture of a real orange, scan it,
and “paste” onto simple geometric model
—This process is texture mapping
« Still might not be sufficient because
resulting surface will be smooth
—Need to change local shape
—Bump mapping

12

Three Types of Mapping

 Texture Mapping
—Uses images to fill inside of polygons

* Environmental (reflection mapping)

—Uses a picture of the environment for
texture maps

—Allows simulation of highly specular
surfaces
* Bump mapping
—Emulates altering normal vectors during the
rendering process

Texture Mapping

geometric model texture mapped

13

Environment Mapping

Bump Mapping

14

Magnification and
Minification
More than one texel can cover a pixel (minification) or
more than one pixel can cover a texel (magnification)

Can use point sampling (nearest texel) or linear filtering
(2 x 2 filter) to obtain texture values

—— T e——
Texture Polygon Texture Polygon
Magnification Minification

Aliasing

* Point sampling of the texture can lead to

aliasing errors
point samples in u,v

miss blue stripes (O X,y,z) space
\'4

A

/|
A

5 | ¥
point samples in texture space

-

15

Area Averaging

A better but slower option is to use area averaging

Y X

-
-

Ys

pixel

preimage

Note that preimage of pixel is curved

MIP Mapping

+ MIP Mapping is one popular technique for precomputing and performing this
prefiltering. MIP is an acronym for the Latin phrase muitium in parvo, which
means "many in a small place”. The technique was first described by Lance
Williams. The basic idea is to construct a pyramid of images that are
prefiltered and resampled at sampling frequencies that are a binary fractions
(1/2,1/4,1/8, etc) of the original images sampling.

« While rasterizing we compute the e
index of the decimated image that Sk
is sampled at a rate closest to the "T O \\i{\
density of our desired sampling rate
(rather than picking the closest one
can in also interpolate between pyramid
levels).

i h\““‘ﬁ Final sub-map
%' is only one toxel

\\\ Esch sub-map i

172 the size (174

0 / the area) of the

preceading map

Main [fall-resolution]
texiure map

i L
: E.. Computing this series of filtered images requires

only a small fraction of additional storage over the
original texture (How small of a fraction?).

3/31/2003 Lecture 18 6

Storing MIP Maps

» One convienent method of storing a MIP map is shown below (It also nicely
illustrates the 1/3 overhead of maintaining the MIP map).

* The rasterizer must be modified to
compute the MIP map level. Remember
the equations that we derived last

‘ rw,
lecture for mapping screen-space §=
interpolants to their 3-space equivalent, wy + f(Wg - Wl)
3/31/2003 Lecture 18 7

OpenGL Code Example

Incorporating MIPmapping into OpenGL applications is surprisingly easy.
// Boilerplate Texture setup code

glTexlmage2D(GL_TEXTURE_2D, O, 4, texWidth, texHeight, O, GL_RGBA,GL_UNSIGNED_BYTE, data);
gluBuild2DMipmaps(GL_TEXTURE_2D, 4, texWidth, texHeight, GL_RGBA, GL_UNSIGNED_BYTE, data);

giTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,): OpanCL sl provids a ity
GL_LINEAR_MIPMAP_LINEAR /o specitying tha MPmzp mage
giTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); e oo g e cos
giTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); Tis aporoach praicas mors
giTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); control oer itaring n the
aiTexEnvr(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL); e s

The gluBuildMipmaps() utility routine will automatically construct a mipmap from
a given texture buffer. It will filter the texture using a simple box filter and
then subsample it by a factor of 2 in each dimension. |t repeats this process
until one of the texture's dimensions is 1. Each texture ID, can have multiple
levels associated with it. GL_LINEAR_MIPMAP_LINEAR trilinearly
interploates between texture indices and MIPmap levels. Other options
include GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST_MIPMAP_LINEAR,
and GL_LINEAR_MIPMAP_NEAREST.

3/31/2003 Lecture 18 0

17

Example

point linear
sampling filtering
mipmapped mipmapped
point linear
sampling filtering

Automatic Texture Coordinate

Generation

* OpenGL can generate texture coordinates
automatically
glTexGen{ifd} [v] ()

* generation modes
~-GL_OBJECT LINEAR
-GL_EYE_LINEAR
—-GL_SPHERE MAP (used for environmental maps)

* Check the OpenGL Red Book!
—4th Ed., Chapter 8, pp.422-432, 446-450.

18

Projective Textures

» Treat the texture as a light source (er a slide pro_jector)
+ No need to specify texture coordinates explicitly
= A good model for shading variations due to illumination (cool Spotlights)

A fair model for view-dependent reflectance (can use pictures)

3/31/2003 Lecture 18 14

The Mapping Process

During the llumination process:

For each vertex of triangle
(in world or lighting space)
Compute ray from the
projective textures origin
to point
Compute homogeneous
texture coordinate, [t} &, t/7
(use equation from last slide)
During scan conversion
(in projected screen space)
Interpolate all three texture
coordinates in 3-space
(premultiply by wof vertex)
Do normalization at

This is the same process, albeit with an

each rendered pixel additional transform, as perspective
i=ti/t, j=tj/t correct texture mapping. Thus, we can do
Access projected texture it for freel Almost.
3/31/2003 Lecture 18 16

19

Another Frame "Texture Space”

OpenGL is able to insert this extra projection transformation for textures by

including another matrix stack, called GL_TEXTURE.
The transform we want is:
1

@]
o O

T =

eye

Pprnj Vprnj Meye —to-world

This matrix undoes the worid-to-eye
/rransform on the MODEL_WEW

matrix stack. so the projective
texture can be specified in world
coordinates. Note: If you specify
Jour ights in eye-space then this
FaLrix (5 identity,

This matrix positions the projector

in the world, much like the viewing

This matrix specifies the frustum of matrix poS{tions the eye Wthin the
the profector . It is a non-aifine, worta (HIVI. you can use B
projection matrix. You can use any lulookAL() to sat this up i you
of the profection transformations want.

to establish it, such as gifrustum(),

gOrthol) or gluPerspective ().

o O ~=
O~
—_ M= M= N[—

2
0
0
0
/

ranging from [~} 1] to vaiid texture
coordinates ranging from [0l

3/31/2003 Lecture 18

OpenGL Example

Here is a code fragment implementing projective textures in OpenGL

1/ The following information is associated with the current active texture

// Basically, the first group of setting says that we will not be supplying texture coordinates.

1/ Instead, they will be automatically established based on the vertex coordinates in "EYE-SPACE"
1/ (after application of the MODEL_VIEW matrix).

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, (int) GL_EYE_LINEAR);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, (int) GL_EYE_LINEAR);
glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, (int) GL_FYE_LINEAR);
giTexGeni(GL_Q), GL_TEXTURE_GEN_MODE, (int) GL_EYE_LINEAR);

1/ These calls initialize the TEXTURE_MAPPING function to identity. We will be using
// the Texture matrix stack to establish this mapping indirectly.

float [] eyePlaneS = {1.0f, 0.0f, 0.0f, 0.0r };
float [] eyePlaneT = { 0.0f, 1.0f, 0.0f, 0.0f };
float [] eyePlaneR = { 0.0f, 0.0f, 1.0f, 0.0f };
float [] eyePlaneQ = { 0.0f, 0.0f, 0.0f, 1.0f };

glTexGenfuv(GL_S, GL_EYE_PLANE, eyePlaneS);
glTexGenfv(GL_T, GL_EYE_PLANE, eyePlaneT):
glTexGenfv(GL_R, GL_EYE_PLANE, eyePlaneR);
glTexGenfv(GL_Q, GL_EYE_PLANE, eyePlaneQ);

3/31/2003 Lecture 18

20

OpenGL Example (cont)

The following code fragment is inserted into Draw() or Display()

if (projTexture) {
glEnable(GL_TEXTURE_2D);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
glEnable(GL_TEXTURE_GEN_Q);
projectTexture();

/I ... draw everything that the texture is projected onto

if (projTexture) {
glDisable(GL_TEXTURE_2D);
giDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);
giDisable(GL_TEXTURE_GEN_R):
glDisable(GL_TEXTURE_GEN_Q);

3/31/2003 Lecture 18

OpenGL Example (cont)

Here is where the extra "Texture” transformation on the vertices is inserted.

private void projectTexture() {
giMatrixMode(GL_TEXTURE);
glLoadldentity();
glTranslated(0.5, 0.5, 0.5); // Scale and bias the [-1,1] NDC values
glScaled(0.5, 0.5, 0.5); /1 to the [0,1] range of the texture map
gluPerspective(15,1,5,7); // projector "projection” and view matrices
gluLookAt(lightPosition[0] lightPosition[1] lightPosition[2], 0,0,0, 0,1,0);
giMatrixMode(GL_MODELVIEW);

ETrTE— .o

3/31/2003 Lecture 18

20

21

Shadow Map

« Similarly, by clever use of giTexGen(),
we can cast shadows on objects.

The A < B shadowed fragment case The A = B unshadowed fragment case

depth map image plane \ depth map image plane

Vol / depthmapz =A A / depthmapZ = A

light - - light N

SSSSSS © 'source @
R e R e
) \ position \ positi
/ eyeviewimage plane, 7 eyeviewimage plane,
aka. the frame buffer / aka. the frame buffer
lightZ=8 lightZ=8

Figure 1. These diagrams were taken from Mark Kilgard’s shadow mapping presentation at GDC
2001. They illustrate the shadowing comparison that occurs in shadow mapping.

More Detail

 For projective texture, see:
http://developer.nvidia.com/object/Proje
ctive_Texture Mapping.html

* For shadow map, see:
http://developer.nvidia.com/object/hwsh
adowmap_paper.html

22

Environment Maps

If, instead of using a transform of the vertex to index the projected texture,
we can instead use the transformed surface normal as an index into the
texture map. This can be used to simulate reflections. This approach is not
completely accurate. It assumes that all reflected rays begin from the same
point, and that all cbjects in the scene are the same distance from that

point.

View Point

Enviranment map
anasphere

QObject

3/31/2003 Lecture 18 21

Question:
Aren’t shadow and reflection global
illumination effects? Why can we do it
in the hardware pipeline?

23

Sphere Mapping Basics

» OpenGL provides special support for a particular form of Normal mapping
called sphere mapping. It maps the normals of the object to the
corresponding normal of a sphere. It uses a texture map of a sphere viewed
from infinity to establish the color for the normal.

3/31/2003 Lecture 18 22

Sphere Mapping

+ Mapping the normal to a point on the sphere

T
Vigwer ™, T n
{0.0.0] ~ - k4

Fetiactive
polygon

R=V-2(N-V)N
p=yRI+R+ (R, +1)?

R 1 1
s=—4+— t= _y +—
p 2 2p
3/31/2003 Lecture 18 23

24

OpenGL code Example

/1 this gets inserted where the texture is created

giTexGeni(GL_S, GL_TEXTURE_GEN_MODE, (int) GL_SPHERE_MAP);
giTexGeni(GL_T, GL_TEXTURE_GEN_MODE, (int) GL_SPHERE_MAP);

/1 Add this before rendering any primatives
if (texWidth > Q) {
glEnable(GL_TEXTURE_2D);
glEnable(GL_TEXTURE_GEN_S);

glEnable(GL_TEXTURE_GEN_T);
}

3/31/2003 Lecture 18

24

25

	Texture Mapping
	
	Derivation of s and t
	Texture Mapping II
	What You Will Learn Today?
	The Limits of Geometric Modeling
	Modeling an Orange
	Modeling an Orange (2)
	Three Types of Mapping
	Texture Mapping
	Environment Mapping
	Bump Mapping
	Magnification and Minification
	Aliasing
	Area Averaging
	Example
	Automatic Texture Coordinate Generation
	Shadow Map
	More Detail

